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The substitution of relations (5) and (6) into equations (3) and (4) respectively 
gives the following one-dimensional integrals : 

+ m  

g,(.> = 1 (g,-l(a’)gl(a-a’)-h,- ,(a’)hl(a-a’)} da’ (7 )  

h,(a) = 1 {g,-l(a’)hl(a-a’)+h,-,(a’)g,(a-a’)}da’ (8) 

- m  
and 

+ m  

-m 

with g,( a) = g,( - a) and h,( a) = h,( - a) for cylindrically symmetric functions. 
The evaluation of integrals of the type (7) and (8) has been given by Misell and 
Burge (1969). 

The actual scattering factors are given by 

where g,’( a) = dg,/da. A similar equation to (9) may be written for f,(e) sin(y,(e)} 
and h,( a). 

Hence the summation (2) may be evaluated and lq5,(e)12 computed for a direct 
comparison with the experimentally determined scattering profiles. Although the 
specific problem considered here is the evaluation of angular folding integrals in the 
free-atom formulation (readily available from the literature) the analysis applies to 
electron scattering by amorphous specimens. The extension of this work to a con- 
sideration of diffraction effects is in progress. 

The author is grateful for the award of a Shell Research Fellowship. 

Department of Physics, 
Queen Elizabeth College, 
Campden Hill Road, London W8, 

D. L. MISELL 
13th March 1970 
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Correlation functions for classical systems in the 
van der Waals limit 

Abstract. A v-dimensional system of particles with two-body potential 
q(r) + yvK(yr) is considered. Various correlation functions are defined and 
evaluated in the limit y-+ 0. Some of the results describe two-phase states, 
and others are closely related to the Ornstein-Zernike theory. 
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This letter concerns the correlation functions of a u-dimensional classical system 
of particles with a two-body potential of the form 

d r )  + Y vK(yr)  (1) 
where q(r) is called the reference potential and y V K ( y r )  the Kac potential. We consider 
various limiting forms of these correlation functions in the v m  der Waals limit y -+ 0. 
The corresponding limiting thermodynamic functions have been treated in several 
recent papers (Lebowitz and Penrose 1966, Gates and Penrose 1969). 

We consider firstly the well-known k-particle distribution function (see Fisher 1965) 
nk(xl...xk, N ,  Q, y )  for a system of N particles in a volume Q. Following Fish.er, we 
define a space-averaged infinite volume correlation function by 

I n  

NlC2 +R 

where p is the density. To understand the structure of the system over distances 
much less than y - l  (i.e. on the scale of the reference potential), we consider the short- 
range distribution function 

fikS(rk-l, p) E lim +ik(rk-', p,  y )  (3)  
Y +o 

where r m  z ( r  l...rm). T o  understand the structure over distances of order y- l  (i.e. 
on the scale of the Kac potential) we consider the long-range distribution function 

Secondly, we consider the well-known mod$ed Ursell correlation functiom 
&($1...xk) N ,  Q, y )  (see Lebowitz and Percus 1963), for example 

62(31, $2) = f i2(Xl ,  x2) - ~ 1 ( ~ 1 ) . 1 ( ~ 2 > + ~ 1 ( ~ 1 ) ~ ( ~ 1 - ~ 2 ) .  

We define their space averages z&(rk-l, p, y )  as in (2) .  T o  understand the relevance 
of the Ornstein-Zernike theory to the present model, we shall consider the weighted 
&ell functions 

The form of all these limiting correlation functions depends on the state of the 
system for a given p. The  state can be specified by the behaviour of the limiting free- 
energy density (per unit volume) 

where a(p, y )  is the free-energy density corresponding to (1). States can be broadly 
classified into one-phase states, in which p is not an interior point (but may be an end 
point) of a straight line segment of the graph of a(p, O+), and two-phase states, in 
which p is an interior point of such a segment. Examples of these states are: 

(i) One-phase fluid states, which we define by the condition that 

a(p, 0 +) = ao(p) +hap2 

where ao(p) is the free-energy density for K = 0 and a 3 J d s  K(s). 



Letters to the Editor L13 

(ii) Two-phasejuid states, which we define as those two-phase states for which 

a(p, 0 + ) = C E ( a O ( p )  +*,vzp2) 
where CEf(p), called the convex envelope off,  is defined as the maximal convex 
function not exceeding f (p ) .  

The occurrence of states (i) and (ii) was proved by Lebowitz and Penrose (1966). 
One can also show that, for some functions K ,  there are other states for which the 
local density is non-uniform. These latter states can be classified by using the 
variational principle derived by Gates and Penrose (1969). We consider a func- 
tion n,(y) which satisfies the conditions: 

(a) 0 < n,(y) < po, where pc is the maximum density permitted by q(r). 
( 6 )  n,(y) is periodic in y and 

where I?, is the unit cell of n,. 

periodic function n(y) with unit cell I’ by 
(c)  For a given p,  n, minimizes the functional G(n), which is defined for any 

When such a function n, exists one obtains 

a ( p , O  + ) = G(n,,). (8) 
We know that such an no exists in the case of one-phase fluid states (i) where we 

(iii) One-phase ordered states, defined by the condition that n, exists but is not 
find n, = p. We shall also consider: 

everywhere (nor almost everywhere) equal to p. 
Finally, we shall consider: 

(iv) Two-phase ordered states, defined as those two-phase states for which a ( p ,  0 + ) 
is linear for p1 < p < p2, while npl  and n,, exist, and at least one of them is not constant; 
thus 

(9) 
Pa-P  P-P1  

P2 - P1 
a (p ,  0 +) = - G(%J + - G(fl,,) for p1 < p < pa. 

Pz - P1 

One can prove the existence of states (iii) and (iv) in a very special case of the present 
model (which I hope to present in a future publication). 

I t  also seems possible that there are other states for which n, is not periodic, but is 
weakly periodic in some sense (e.g. ‘almost periodic’). We shall not consider such 
states here. 

One can prove the following results about the short-range distribution functions 
f iks  defined by ( 3 ) .  For one-phase fluid states 

f i k S ( r k - 1 ,  p )  = f i ,$ (rk- l ,  p )  (10) 
where ?iko is the space-averaged distribution function for the system with K = 0. 
For a two-phase fluid state with p1 < p < pz 
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For one-phase ordered states 

1 
ii,"(r"-l, p)  = -1 dy f ik0{rk- l ,  n,(y)) (12) 

r D  r, 

and for two-phase ordered states with p1 < p < p2 

Equations (11) and (13) indicate the presence of two phases in the short range. 
For a one-dimensional special case of the present model, the results (10) and (1 1) have 
been proved by Uhlenbeck et al. (1963). For the general case, but with k = 2 only, 
(10) and (1 1) have been proved by Lebowitz and Penrose (1966). The  results (12) 
and (13) are new: they yield (10) and (11) as special cases when n, = p. 

One can prove equations (10) to (13) by a method which, like that of Fisher and of 
Lebowitz and Penrose, is based on functional differentiation. Roughly speaking, one 
shows that 

where q k  is a /+particle interaction potential. One then uses (8) to calculate the 
functional derivative. 

One can treat Ursell correlation functions and the direct correlation function, in 
the short range, in the same way and can show that they are given by formulae like 
(10) or (12) for one-phase states. 

One can prove the following results about the long-range distribution functions 
iikL defined by (4). For one-phase fluid states 

A , c L ( s " - l ,  p)  = p'c (15) 

and for one-phase ordered states 

f i , L ( s k - l , p )  = - 1 dyn,(y)np(y+sl) " * n D ( Y + s k - l ) *  (16) 
I ' P  rD  

For two-phase states fikL is given by a linear combination of one-phase results as in 
(11) and (13): hence for such states the system has a two-phase structure in both the 
short and the long ranges. Equation (15) implies that, for one-phase fluid states, the 
particles are statistically independent in the long range. Clearly (15) is a special case 
of (16) with n, = p. 

The  method of proof is again based on functional differentiation. One shows that 

where y(kc-l)vK ,(yr,, . . .yrk- l )  is a generalized k-particle Kac potential. One then 
uses essentially (8) to compute the functional derivative. 

For one-phase states, one can show that the long-range Ursell correlation func- 
tions and the long-range direct correlation function (defined like (4)) are all zero. 
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One can prove the following results about the two-particle weighted Ursell 
function iizw defined by ( 5 ) .  For one-phase fluid states 

where 

and 

K(p)  = J ds  K(s)  e x p ( 2 ~ i p  , s). (19) 

For one-phase ordered states 

where 9, is the Green's function of the operator H,(y) defined for any functionf by 

H,(Ylf(Y) 3 BazO{n,(Y)lf(Y) +B j dY'.f(Y"Y -Y ' ) *  (21) 

(22) 
Thus 9, satisfies 

For two-phase states we find that iikw = CO. 

The  result (18) is a special case of (20), obtainable by setting n, = p in (22) and 
using Fourier transforms. For low densities, (18) was found in a different form by 
Hemmer (1963), who obtained the right-hand side of (18) as a term in an expansion of 
ii2(r, p, y )  for small y (see also van Kampen 1964). Hemmer also showed that, for 
large IsI, the right-hand side of (18) tends asymptotically to the well-known Ornstein- 
Zernike formula (of the form A exp( - Xlsl)/lsl in three dimensions, where A and X are 
positive constants). Consequently, our results (18) and (20) can be regarded as a 
generalization and precise formulation of the Ornstein-Zernike theory. 

H A Y )  $,(Y,Y') = S(Y -Y'>*  

Further results one can prove are: for one-phase fluid states 

where 

and for one-phase ordered states 

% W ( S 1 ,  s 2 , p )  = - - 1, dY 1 dY' a3O{nP(Y')) gP(Y', Y )  
rl, 

x $,(Y', Y +SI) 9,(Y', Y +a. (24) 
Again (23) can be deduced from (24) by setting n, = p. A formula similar to (24) has 
been used in a different context by Percus (1964). 

To prove these results one relates iikw to the kth functional derivative of a(p, 0 + )  
with respect to r,b(y), where r,b(yx) is a periodic external potential (see Gates and Penrose 
1969). 
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Finally, we consider the modiJied direct correlation function CA(x,, x,, N ,  Q, y), 
defined in terms of G2(x1, x,, N ,  Q, y )  by 

dx  O ~ ( X ,  x,)~"(x, x,) -6(x,-x2). (25) s 
Its space average E(r, p ,  7 )  can be defined like (2). We define the weighted direct 
correlation function 

Then, for one-phase ordered states, one can deduce from (ZO), (22) and (25) that 
1 r  

For one-phase fluid states one just puts n, = p. Hence, for all one-phase states, we 
have our most important result 

E W ( S ,  p )  = -PK(S) for s # 0 (28) 
which has been obtained in different forms by Lebowitz and Percus (1963) and 
Lebowitz et al. (1965). 

I am grateful to Professor 0. Penrose for helpful advice, and to The  Royal 
Commission for the Exhibition of 185 1 for financial support. 

Mathematics Department, 
Imperial College, 
London. 

D. J. GATES 
26th January 1970 
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Simplification of the direct interaction equations for 
turbulent shear flow 

Abstract. Simplifying assumptions can be made which reduce the full stat- 
istical equations for turbulent shear flow to differential equations which are 
amenable to computation. 

Kraichnan (1966-this gives references to his earlier papers) first published his 
Direct Interaction (DI) method for closing the Navier-Stokes equations in 1958, and 
Edwards (1964) introduced the rather similar Fokker-Planck method six years later. 


